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ABSTRACT

Previous papers in ad hoc IR reported that scoring functions
should satisfy a set of heuristic retrieval constraints, provid-
ing a mathematical justification for the normalizations his-
torically applied to the term frequency (TF). In this paper,
we propose a further level of abstraction, claiming that the
successive normalizations are carried out through composi-
tion. Thus we introduce a principled framework that fully
explains BM25 as a variant of TF-IDF with an inverse or-
der of function composition. Our experiments over standard
datasets indicate that the respective orders of composition
chosen in the original papers for both TF-IDF and BM25
are the most effective ones. Moreover, since the order is dif-
ferent between the two models, they also demonstrated that
the order is instrumental in the design of weighting models.
In fact, while considering more complex scoring functions
such as BM25+, we discovered a novel weighting model in
terms of order of composition that consistently outperforms
all the rest. Our contribution here is twofold: we provide a
unifying mathematical framework for IR and a novel scoring
function discovered using this framework.
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1. MOTIVATION

Fang et al. introduced in [3] a set of heuristic retrieval
constraints that any scoring function used for ad hoc infor-
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mation retrieval (IR) should satisfy. In particular, these con-
straints involve term frequency, term discrimination, docu-
ment length and the interactions between them. For in-
stance, they stated that a scoring function should favor
document matching more distinct query terms. It is one
of the earliest works that formally defined the properties
that both the TF and the IDF components of any weighting
model should possess. It is a unifying theory in IR that ap-
plies to the vector space model (TF-IDF [13]), probabilistic
(BM25 [10]), language modeling (Dirichlet prior [15]) and
information-based (SPL [2]) approaches and the divergence
from randomness framework (PL2 [1]).

The definition of these constraints contributed to the im-
provement of the overall effectiveness of most modern scor-
ing functions. Constraints on the term frequency result in
successive normalizations on the raw TF, each one satisfy-
ing one or more properties. In our work, we intended to go
one step further and we propose the use of composition to
explain how the normalizations are applied successively in
the general TFXIDF weighting scheme. In section 2, we de-
scribe in details the mathematical framework we designed.
In section 3, we present the experiments we conducted over
standard datasets and the results obtained that indicate
how important the order of composition is, along with a
novel and effective weighting model, namely TFos50p XIDF.
Finally, in section 4, we conclude and mention future work.

2. MATHEMATICAL FRAMEWORK

In ad hoc IR, a scoring function associates a score to a
term appearing both in a query and a document. This func-
tion consists of three components supposedly independent of
one another: one at the query level (QF), one at the docu-
ment level (TF) and one at the collection level (IDF). These
components are aggregated through multiplication to obtain
a final score for the term denoted hereinafter by TF xIDF.
We omit voluntarily to mention QF in the name since it is
a function of the term frequency in the query and it has
usually a smaller impact on the score, in particular for Web
queries that tend to be short. We make here a difference be-
tween the TFXIDF general weighting scheme and TF-IDF,
the pivoted normalization weighting defined in [13]. Note
that because we rank documents, these term scores will be
aggregated through sum to obtain a document score but this
is beyond the scope of the current paper.

2.1 A set of TF normalizations

Since the early work of Luhn [4], term frequency (TF)
has been claimed to play an important role in information



retrieval and is at the center of all the weighting models.
Intuitively, the more times a document contains a term of
the query, the more relevant this document is for the query.
Hence, it is commonly accepted that the scoring function
must be an increasing function of the term frequency and
the simplest TF component can be defined as follows:

TF(t,d) =tf(t,d) (1)

where tf(t,d) is the term frequency of the term ¢ in the
document d. However, as the use of the raw term frequency
proved to be non-optimal in ad hoc IR, the research com-
munity started normalizing it considering multiple criteria,
mainly concavity and document length normalization. Later,
these normalizations were explained as functions satisfying
some heuristic retrieval constraints as aforementioned [3].

Concave normalization.

The marginal gain of seeing an additional occurrence of a
term inside a document is not constant but rather decreas-
ing. Indeed, the change in the score caused by increasing
TF from 1 to 2 should be much larger than the one caused
by increasing TF from 100 to 101. Mathematically, this cor-
responds to applying a concave function on the raw TF. We
prefer the term concave like in [2] to sublinear like in [5]
since the positive homogeneity property is rarely respected
(and actually not welcomed) and the subadditivity one, even
though desirable, not sufficient enough to ensure a decreas-
ing marginal gain.

There are mainly two concave functions used in practice:
the one in TF-IDF [13] and the one in BM25 [10] that we re-
spectively called log-concavity (TF;) and k-concavity (TFg):

TE(t,d) =1+ In[l + In[tf(t, d)]] ()
TFi(t,d) = (’ﬁg i)t;(ifff) d) (3)

where ki is a constant set by default to 1.2 corresponding
to the asymptotical maximal gain achievable by multiple
occurrences compared to a single occurrence.

Document length normalization.

When collections consist of documents of varying lengths
(like web pages for the Web), longer documents will — as
a result of containing more terms — have higher TF val-
ues without necessary containing more information. For in-
stance, a document twice as long and containing twice as
more times a term should not get a score twice as large but
rather a very similar score. As a consequence, it is com-
monly accepted that the scoring function should be an in-
verse function of the document length to compensate that
effect. Early works in wvector space model suggested to nor-
malize the score by the norm of the vector, be it the L*
norm (document length), the L? norm (Euclidian length) or
the L* norm (maximum TF value in the document) [11].
These norms still mask some subtleties about longer docu-
ments — since they contain more terms, they tend to score
higher anyway. Instead, the research community has been
using a more complex normalization function known as piv-
oted document length normalization and defined as follows:

tf(t d)

(4)
d
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TF,(t,d) =

where b € [0,1] is the slope parameter, |d| the document

length and awvdl the average document length across the col-
lection of documents as defined in [12].

2.2 Composition of TF normalizations

Based on this set of properties and their associated func-
tions, it seems natural to apply them to the raw TF succes-
sively by composing them. In the literature, the document
length normalization has usually been applied to either the
overall term score or the document score like one would nor-
mally normalize a vector. However, it was then hard to fully
fit BM25 in the TF xIDF weighting scheme. With composi-
tion, it is just a matter of ordering the functions. We present
here the two compositions behind TF-IDF and BM25, re-
spectively TFpo; (= TF, o TF;) and TFyop (= TFg o TF)):
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where K = k1 x (1 —b+bx %) as defined in [10].

Note that under this form, it is not obvious that TFyop is
really a composition of two functions with the same proper-
ties as the one in TF,;. We think this is the main reason
why composition has never been considered before. By do-
ing so, we provide not only a way to fully explain BM25 as a
TF xIDF weighting scheme but also a way to easily consider
variants of a weighting model by simply changing the order
of composition. As we will see in section 3, this led us to a
new TFxIDF weighting scheme that outperforms BM25.

TFpoi(t,d) =

T Frop(t,d) =

2.3 Inverse Document Frequency

While the higher the frequency of a term in a document is,
the more salient this term is supposed to be, this is no longer
true at the collection level. This is actually quite the inverse
since these terms have a presumably lower discrimination
power. Hence, the use of a function of the term specificity,
namely the Inverse Document Frequency (IDF) as defined
in [14] and expressed as follows:

N +1
0]

where N is the number of documents in the collection and
df (t) the document frequency of the term ¢.

2.4 TF-IDF versus BM25

By TF-IDF, we refer to the TFxIDF weighting model
defined in [13], often called pivoted normalization weighting.
The weighting model corresponds to TF o XxIDF:

IDF(t) =1lo (7)

1+ 1In[l 4+ In[tf(t, d)]] N+1
TF-IDF(t,d) = x log (8)
1—b+bx L2 df (t)

By BM25, we refer to the scoring function defined in [10],
often called Okapi weighting. It corresponds to TFyop, XxIDF
when we omit QF (k-concavity of parameter k3 for tf (¢, q)).
Thus, it has an inverse order of composition between the



concavity and the document length normalization compared
to TF-IDF. The within-document scoring function of BM25
is written as follows when using the IDF formula defined in
subsection 2.3 to avoid negative values, following [3]:

(k1 +1) x t£(t,d) N+1

BM25(t,d) = Krifd) 8 G v

2.5 Lower-bounding TF normalization

Through composition, we also allow additional constraints
for the TF component to be satisfied easily. Subadditiv-
ity is for instance a desirable property — if two documents
have the same total occurrences of all query terms, a higher
score should be given to the document covering more dis-
tinct query terms. Here, it just happens that TF; and TFy
already satisfy it as noted in [3].

Recently, Lv and Zhai introduced in [6] two new con-
straints to the work of Fang et al. to lower-bound the TF
component. In particular, there should be a sufficiently large
gap in the score between the presence and absence of a query
term even for very long documents where TF,, tends to 0 and
a fortiori the overall score too. Mathematically, this corre-
sponds to be composing with a third function TFs that is
always composed after TF), since it compensates the poten-
tial null limit introduced by TF, and it is defined as follows:

tf(t,d) +6 if tf(t,d) >0

. (10)
0 otherwise

TFs(t,d) = {
where § is the gap, set to 0.5 if TF; is composed immediately
after TF, and 1 if concavity is applied in-between. These
are the two values defined in the original papers [6, 7] and
we just interpreted their context of use in terms of order of
composition. We did not change nor tune the values.

The weighting models Piv+ and BM25+ defined in [6]
correspond respectively to TFsopo; XIDF and TFsorop XIDF
while BM25L defined in [7] to TFgo50p XIDF. We clearly see
that the only difference between BM25+ and BM25L is the
order of composition: this is one of the advantages of our
framework — easily represent and compute multiple variants
of a same general weighting model. In the experiments, we
considered all the possible orders of composition between
TF; or TF;, TF, and TF; with the condition that TF,
always precedes TF; as explained before.

For instance, we will consider a novel model TFjo50, XIDF
with TFio50p defined as follows:

tf(t,d)
1—b+bx L4

where b is set to 0.20 and § to 0.5.

T Flosop(t,d) = 1 +In[1 + In] +o] (11

3. EXPERIMENTS

Following our mathematical framework that relies on com-
position, we wondered why the order of composition was dif-
ferent between two widely used scoring functions — TF-IDF
and BM25. In the original papers [11, 9], there was no men-
tion of the difference in the order and this motivated us to
investigate the matter. Our initial thought was that using
an inverse order of composition in BM25 could improve it
or vice-versa for TF-IDF. As a consequence, we tried ex-
haustively the combinations among TFj, TF; and TF, and
report the results. Thereafter, as mentioned in subsection
2.5, we followed the same procedure considering a third func-
tion to compose with: TFs. Indeed, we wanted to explore

the extensions considered by the research community [6, 7]
in terms of composition. This led us to a novel weighting
model that outperforms them (see subsection 3.4).

3.1 Datasets and evaluation

We used two TREC collections to carry out our exper-
iments: Disks 4&5 (minus the Congressional Record) and
WT10G. Disks 4&5 contains 528,155 news releases while
WT10G consists of 1,692,096 crawled pages from a snap-
shot of the Web in 1997. For each collection, we used a
set of TREC topics (title only to mimic Web queries) and
their associated relevance judgments: 301-450 and 601-700
for Disks 4&5 (TREC 2004 Robust Track) and 451-550 for
WT10G (TREC9-10 Web Tracks).

We evaluated the scoring functions in terms of Mean Av-
erage Precision (MAP) and Precision at 10 (P@10) con-
sidering only the top-ranked 1000 documents for each run.
Our goal is to compare weighting models that use the same
functions but with a different order of composition and se-
lect the best ones on both metrics. For example, in Table 1,
TFpo XIDF is compared with TF;o, xIDF and TFy, xIDF
with TFpor xIDF. The statistical significance of improve-
ment was assessed using the Student’s paired t-test consid-
ering p-values less than 0.01 to reject the null hypothesis.

3.2 Platform and models

We have been using Terrier version 3.5 [8] to index, re-
trieve and evaluate over the TREC collections. For both
datasets, the preprocessing steps involved Terrier’s built-in
stopword removal and Porter’s stemming. We did not tune
the slope parameter b of the pivoted document length nor-
malization on each dataset. We set it to the default value
suggested in the original papers: 0.20 when used with log-
concavity [13] and 0.75 when used with k-concavity [10].

3.3 Results for TF-IDF versus BM25

We report in Table 1 the results we obtained on the afore-
mentioned datasets when considering concavity and pivoted
document length normalization. To the best of our knowl-
edge, experiments regarding the same functions (TFy, TF;
and TF,) with a different order of composition have never
been reported before. They indeed show that the original or-
der chosen for both TF-IDF and BM25 is the most effective
one: TF,o XIDF outperforms TF;op xIDF and TFyop, xIDF
outperforms TF ., xIDF. But since the order is different be-
tween the two, this also indicates that the order does matter
depending on which function is chosen for each property.

For these two models (TF-IDF and BM25), the use of
a different concave function to meet the exact same con-
straints requires the pivoted document length normalization
to be applied before or after the function. The impact is even
more significant on the Web dataset (WT10G) that corre-
sponds the most to contemporary collections of documents.

3.4 Results for lower-bounding normalization

In Table 2, we considered in addition the lower-bounding
normalization function TF; defined in subsection 2.5. The
best-performing weighting model on both datasets is a novel
one — TFio50p XIDF — and it even outperforms BM25+ and
BM25L (significantly using the t-test and p < 0.01). This
model has never been considered before in the literature to
the best of our knowledge. In fact, the results from Table 1
establish that TF,; should apparently be applied before TF,,



Table 1: TF-IDF vs. BM25: an inverse order of
composition; bold indicates significant performances

Weighting model TREC 2004 Robust | TREC9-10 Web

MAP Pa@io MAP | P@I0
IDF 0.1396 | 0.2040 | 0.0539 | 0.0729
TF 0.0480 | 0.0867 | 0.0376 | 0.0833
TF, [b=0.20] 0.0596 | 0.1193 | 0.0531 | 0.1021
TF, [b=0.75] 0.0640 | 0.1289 | 0.0473 | 0.1000
TF, 0.1591 | 0.3141 | 0.1329 | 0.2063
TFy 0.1768 | 0.3269 | 0.1522 | 0.2104
TF pox 0.0767 | 0.1932 | 0.0465 | 0.0604
TFiop 0.1645 | 0.3651 | 0.0622 | 0.1854
TF pot 0.1797 | 0.3647 | 0.1260 | 0.1875
TFop 0.2045 | 0.3863 | 0.1702 | 0.2208
TF yox XIDF 0.1034 | 0.2293 | 0.0507 | 0.0833
TFop X IDF 0.1939 | 0.3964 | 0.0750 | 0.2125
TFpoxIDF [TF-IDF] || 0.2132 | 0.4064 | 0.1430 | 0.2271
TFropxIDF [BM25] | 0.2368 | 0.4161 | 0.1870 | 0.2479

like in TF-IDF. With lower-bounding normalization, it no
longer holds. The formula for TFio50, XxIDF was given in
equation 11. Without the use of our formal framework and
composition, it would have been harder to detect and test
these variants that can outperform state-of-the-art scoring
functions when the order of composition is chosen carefully.

Table 2: TF .50, xXIDF vs. BM254 and BM25L; bold
indicates significant performances.

TREC 2004 Robust | TREC9-10 Web
MAP Pa@l1o MAP Pal10

Weighting model

T sopok 0.1056 | 0.2349 | 0.0556 | 0.0771
TF s0t0p 0.1807 | 0.3751 | 0.0668 | 0.2021
TFlo60p 0.2130 | 0.4064 | 0.1907 | 0.2625
TF s0poi 0.2002 | 0.3876 | 0.1436 | 0.2021
TFkosop 0.2155 | 0.3936 | 0.1806 | 0.2292
TFs0kop 0.2165 | 0.3956 | 0.1835 | 0.2354
TFsopok X IDF 0.1466 | 0.2723 | 0.0715 | 0.1000
TFs010p X IDF 0.2096 | 0.4048 | 0.0806 | 0.2292
TF050p XIDF 0.2495 | 0.4305 | 0.2084 | 0.2771
TFs0pot XIDF [Piv-+] 0.2368 | 0.4157 | 0.1643 | 0.2438
TFos0p xIDF [BM25L] | 0.2472 | 0.4217 | 0.2000 | 0.2563
TFsokop xIDF [BM25+] | 0.2466 | 0.4145 | 0.2026 | 0.2521

4. CONCLUSIONS AND FUTURE WORK

Scoring function design is a cornerstone issue in informa-
tion retrieval. In this short paper, we intended to provide
new insights on scoring functions for ad hoc IR. In partic-
ular, we proposed a unifying mathematical framework that
explains how weighting models articulate around a set of
heuristic retrieval constraints introduced in related work.

Using composition to combine the successive normaliza-
tions historically applied to the term frequency, we were
able to fully explain BM25 as a TF xIDF weighting scheme
with just an inverse order of composition between the con-
cavity and the document length normalization compared to
TF-IDF. Besides, the framework also allowed us to discover
and report a novel weighting model — TFo50, xXIDF — that
consistently and significantly outperformed BM25 and its
extensions on two standard datasets in MAP and P@10.

Future work might involve the design of novel retrieval
constraints and their compositions with existing ones. We

are confident that refining the mathematical properties be-
hind scoring functions will continue to improve the effective-
ness of these models in ad hoc IR.
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